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Abstract

This dissertation demonstrates the issues with classic Finite Element Schemes for one and

two-dimensional advection problems in a Hilbert space context, and discusses the effective-

ness of other approaches. The design of algorithms in terms of interacting objects allowed

an application of the recently proposed technique of Discrete-Dual Residual Minimisa-

tion (DDMRes) with scope for generalisation of the system parameters. In particular,

new test-spaces on the Peterson Mesh are proposed and investigated, with novel calcu-

lations performed in two-dimensional advection with constant flow on the unit square.

This yielded optimal convergence rates in the L2-norm of the absolute error, as well as

the norm of the residual in a defined graph space. Additionally, a specialised refinement

of the Peterson mesh was found that afforded faster computation in a specific constant

vertical flow setting, with the cost of an unsolvable system in others and a singular system

in the horizontal flow case.
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1 Introduction

Finite element methods encapsulate some of the most powerful numerical tools for solving

differential equations. They have important applications in modelling, engineering and

more abstract mathematics where simple, analytic solutions to general problems are not

possible or practical to obtain. As such, the inability of ‘standard’ methods to adequately

solve non-coercive weak formulations of even simple first-order partial differential equa-

tions is a pressing issue. Procedural developments in the field of finite element ethods

have been rectifying this issue, with the introduction of new methods like discontinuous

Petrov Galerkin schemes. In particular, the advection-reaction problem has proven noto-

riously difficult to solve and, as a result, there has been considerable academic focus its

numerical solution.

This dissertation outlines specifically the impracticalities of such previous formulations,

such as the ‘standard Galerkin’ methodology, and demonstrates formulations in both one

and two dimensions that employ more sophisticated solution routines. Principles used in

this dissertation, like the Discrete-Dual Minimal-Residual method (DDMRes), have been

applied before to more general Banach space settings ([1]), but we will restrict ourselves

to a Hilbert space context, with a focus towards the specific results for advection and ef-

ficiency of the developed routines. The dissertation investigates the effectiveness of both

the least-squares formulation for one-dimensional advection, and DDMRes with a particu-

lar mesh (and refinement on that mesh) on the unit square for two-dimensional advection.

The least-squares method for advection in one dimension with Dirichlet boundary yields

O(h2) convergence to the solution in the L2-norm as long as the solution u ∈ H2(Ω).

Otherwise, sub-optimal convergence is observed. In constant flow scenarios, the DDM-

Res method demonstrated O(h) convergence in the L2-norm of the absolute error in the

measurement, as well as the norm of the residual in a relevant graph space. The Peterson

Mesh itself was built to demonstrate ‘cross-diffusion’ in certain methods, which implies

sub-optimal convergence and is known to converge only in O(h
1
2 )with the implementa-

tion of Discontnuous Galerkin methods ([10]). As a result, an optimal convergence rate
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with DDMRes for any test case in this setting is not trivial. Additionally, in the vertical

flow case, a specific refinement of the mesh was constructed that resulted in the same

O(h) convergence but was more computationally efficient, as a result of the lack of the

additional unnecessary computation of integrals, and a smaller-sized system of equations

to solve for. However, the same mesh demonstrated a singular system in some cases, and

due to its ‘purpose-built’ construction can not be used to solve DDMRes on the Peterson

Mesh excepting very specific cases.

The remainder of this dissertation will continue as follows: In Section 2, we will give an

overview of the first-order problem starting from first-principles, and give a dimensionally

independent statement of the issue with non-coercive formulations. In Section 3, we will

focus on one-dimensional advection and the failure of the standard Galerkin formulation to

solve it, turning to the least-squares method to demonstrate its effectiveness. In Section 4,

we will walk through two-dimensional advection in terms of its weak form, well-posedness,

and the specific discretisation we will be using. After detailing the routines developed

to set up and solve the system, we will investigate its effectiveness at solving advection

problems for several test-cases. We will conclude these results in Section 5, reflecting on

them and discussing further options for study for this setting.
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2 Problem Overview

A general first-order PDE can be considered in the abstract form:

Find u ∈ U s.t.

Au = f in V∗ (2.1)

where U,V are Banach spaces, A : U → V∗ is a linear operator and f is some ‘source’

data (or more precisely, some given element in the dual space V∗ of V). The problem is

converted into a ‘weak formulation’, given as:

Find u ∈ U s.t.

〈Au, v〉V∗,V = 〈f, v〉V∗,V ∀v ∈ V (2.2)

where 〈·, ·〉 is some duality pairing. In our setting, we will write this problem in the

following form:

Find u ∈ U s.t.

b(u, v) = l(v) ∀v ∈ V. (2.3)

Here, b(·, ·) is a bilinear form on U× V, and l(·) is a linear form on V, which is to say

a(αu+ βw, v) = αa(u, v) + βa(w, v) ∀α, β ∈ R, u, w ∈ U, v ∈ V, (2.4a)

a(u, αv + βw) = αa(u, v) + βa(u,w) ∀α, β ∈ R, u ∈ U, v, w ∈ V, (2.4b)

l(αv + βw) = αl(v) + βl(w) ∀α, β ∈ R, v ∈ V. (2.4c)

When U = V, the existence and uniqueness of a solution to the weak form as stated in (2.3)

is guaranteed by the satisfaction of the Lax-Milgram criteria, although not exclusively.

Specifically, it requires that the bilinear form b(·, ·) be:

• Coercive: i.e ∃c0 ∈ R > 0 s.t. ∀v ∈ V, b(v, v) ≥ c0‖v‖2
V,

• Continuous: i.e ∃c1 ∈ R > 0 s.t. ∀w, v ∈ U,V, |b(w, v)| ≤ c1‖w‖U‖v‖V,

and additionally requires that l(·) be:

• Continuous: i.e ∃c2 ∈ R > 0 s.t. ∀v ∈ V, |l(v)| ≤ c2‖v‖2
V
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Performing a finite element method involves discretising the problem (2.3) by taking

U → Uh, some finite-dimensional subspace of U (defined by a ‘mesh-parameter’ h), and

V→ Vh, similarly. We may now write our problem:

Find uh ∈ Uh s.t.

b(uh, vh) = l(vh) ∀vh ∈ Vh. (2.5)

In a standard Galerkin setting, Uh = Vh, and we have some basis φ1, φ2...φn for Uh. We

can represent our solution uh as a linear combination of these basis functions:

uh =
n∑
i=1

Uiφi (2.6)

where the coefficients Ui will define the solution. If we then insert this into (2.5) along

with an analogous expansion for vh, we will find

b

(
n∑
i=1

Uiφi ,
n∑
j=1

Vjφj

)
= l

(
n∑
i=j

Vjφj

)
,

→
n∑
i=1

Ui

(
n∑
j=1

Vj (a (φi, φj))

)
=

n∑
i=j

Vj (l (φj)) , (by bilinearity)

→
n∑
i=1

Ui (a (φi, φj)) = l (φj) .

This is now equivalent to a linear system of equations AU = F, where

Aij = a(φi, φj), Fi = l(φi), (2.7)

and U = (U1, U2, ..., Un)T is the set of coefficients that defines the solution. From the

coercivity of b(·, ·), we know that the matrix A is positive definite (see A.1 for a proof

of this). This guarantees its invertibility, and thus the existence of a unique solution for

any data set F. Additionally, as a direct result of the Lax-Milgram criteria, we have the

following error bound:

‖u− uh‖U ≤
c1

c0

inf
vh∈Uh

‖u− vh‖U. (2.8)

This is a statement of the stability of the problem in the sense that it is always bounded

by the best possible approximation in the norm of U, up to some constant defined by the

coercivity and continuity parameters.

We see now, how in this standard Galerkin setting, the guarantee of a well-posed

problem with a discretisation solution that converges in the relevant norm is contingent on
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the Lax-Milgram criteria. Since many such variational forms of first-order PDEs are non-

coercive, we have a serious issue. As a result of this, we must expand our understanding

of the criteria for well-posedness to include those Hilbert space settings where U 6= V

in general. We look to the Banach-Nečas-Babuška Theorem (BNB), of which the Lax-

Milgram Theorem is a special case. We now require the conditions:

∃ γ > 0 s.t inf
w∈U

sup
v∈V

b(w, v)

‖w‖U‖v‖V
≥ γ, (2.9a)

{v ∈ V : b(w, v) = 0 ∀w ∈ U} = {0}. (2.9b)

Together with continuity, these two statements are equivalent to the well-posedness of a

given problem of the form (2.3) (see e.g. [2], Thm. 2.4). Similarly, the discretised problem

is well-posed if it satisfies the ‘discrete inf-sup condition’ ([2], Thm. 2.8):

∃ γ̂ > 0 s.t inf
wh∈Uh

sup
vh∈Vh

b(wh, vh)

‖wh‖U‖vh‖V
≥ γ̂, (2.10)

of which Céa’s Lemma is a natural result (see (A.2)):

‖u− uh‖U ≤
(

1 +
c1

γ̂

)
inf

wh∈Uh

‖u− wh‖U (2.11)

We note here that, if we have coercivity, BNB is equivalent to Lax-Milgram and Céa’s

lemma is equivalent to (2.8)([3] - Thm 7, [4] Lemma 2.28). So we have some exclusive

condition for well-posedness, but we need to specify how a solution is going to behave as

our mesh parameter h changes. In particular, we would like ‘approximability’, defined as:

lim
h→0

(
inf
wh∈U
‖u− wh‖U

)
= 0 ∀u ∈ U. (2.12)

If we have approximability, it follows from (2.11) that not only does a unique solution to

(2.5) exist, but it will converge to the correct solution as h→ 0. Typically, we may make

use of standard results for polynomial interpolation to show approximability, but we will

additionally verify convergence, usually in terms of O(hα), in an experimental sense.

We will look now at a simple first-order PDE in one dimension, demonstrate the issues

with a standard Galerkin discretisation, and discuss another method to generate more

stable solutions. This will serve as a smaller representation of our approach to solving

other systems (or specifically the advection-reaction equation) where more complexity is

involved.
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3 One Dimension: A Basic PDE

Our simple, one-dimensional PDE will be of the form:

ux = f(x) ∀x ∈ Ω = (0, 1) (3.1a)

u(0) = 0. (3.1b)

We wish to find u(x) given some ‘source’ data, f(x). A single boundary condition is

enough to specify an exact solution for this problem. Generally, our weak formulation

will be generated by applying some test function v(x) ∈ V and integrating over the domain

to obtain the problem:

Find u ∈ U s.t. ∫
Ω

u(x)v(x)dΩ =

∫
Ω

f(x)v(x)dΩ ∀v ∈ V. (3.2)

We will see over the course of this section that the methods involved will specify U,V, and v(x)

in slightly different ways, and that the well-posedness of the problem and the convergence

of any possible solution will be ultimately dependent on this, alongside the particular

method of discretisation performed.
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3.1 Standard Galerkin Formulation

3.1.1 Problem Definition

We begin by defining the space

H1
(0(Ω) = {w(x) ∈ L2(Ω);w′(x) ∈ L2(Ω);w(0) = 0} (3.3)

whose norm is the H1-norm:

‖w‖H1(Ω) =
(
‖w′‖2

L2
+ ‖w‖2

L2

) 1
2 (3.4)

where the derivative w’(x) is defined in the weak sense. A key feature of the standard

Galerkin method is the equality of the spaces U and V. We note u(x) ∈ H1
(0(Ω) and

thus represent (3.1) in weak form by multiplying by some test function v(x) ∈ H1
(0(Ω) to

restate the problem:

Find u ∈ H1
(0(Ω) ⊂ L2(Ω) s.t.∫

Ω

u′(x)v(x)dx =

∫
Ω

f(x)v(x)dx ∀v ∈ H1
(0(Ω), (3.5)

or alternatively:

Find u ∈ H1
(0(Ω) ⊂ L2(Ω) s.t.

b(u, v) = l(v) ∀v ∈ H1
(0(Ω). (3.6)

3.1.2 Well-Posedness

Verification of the Lax-Milgram Criteria is simple in this case, excepting coercivity, for

which we find

b(w,w) =

∫
Ω

w′wdx

=
1

2

∫
Ω

(w2)′dx

=
1

2
[w2]10

=
1

2
w2(1).

Since we require some positive constant c0 s.t. b(w,w) ≥ c0‖w‖2
H1(Ω) ∀w ∈ H1

(0(Ω), to

disprove coercivity it suffices to find some counter-example w(x) that vanishes on the

boundaries, but has nonzero norm in H1(Ω). sin(πx) for example, has this property.

10



When dealing with second-order PDEs, a common approach is to perform integration

by parts on the weak form and restate the problem in terms of the resultant integral

and boundary terms. As coercivity is a property of the specific bilinear form in question,

rewriting the equation in this way may allow it to be satisfied. However, It quickly

becomes apparent that this does not solve the issue:

b(u, v) =

∫
Ω

u′(x)v(x)dx

= −
∫

Ω

u(x)v′(x)dx+ [u(x)v(x)]10

= −
∫

Ω

u(x)v′(x)dx+ u(1)v(1) (u(0) = 0).

We can see that the form of b(w,w) will be identical, save for the additional term in

w(1), which would vanish by letting w(1) = 0 in the same way as before. This does not

necessarily mean our problem is ill-posed, just that we have not yet been able to guarantee

a unique solution. On discretisation, we will turn to the discrete inf-sup condition to help

reconcile this.

3.1.3 Discretisation

We discretise, taking H1
(0(Ω) → Uh = P1

cont(Tn), where Tn is the subdivision of Ω into a

uniform set of elements [xi, xi+1], for i = 0, 1, ...n− 1 where xi = ih and h = 1
n
. Our basis

for Uh will be a set of ‘hat functions’ defined on these elements:

φi(x) =

(
1−

∣∣∣∣x− xih

∣∣∣∣)
+

i = 1, ..., n− 1. (3.7)

We should note that this set of basis functions implicitly sets uh(1) = 0 (due to the lack

of a basis function φn). As a result, we must be wary to choose test cases with f that also

imply u(1) = 0 when the boundary condition of (3.1) is applied. Otherwise, our results

will likely not make sense. For a construction of this form, it is trivial to show (see A.3)

that our (n− 1)× (n− 1) system of equations, AU = F, is given by

0 1
2
· · · 0 0

−1
2

0 · · · 0

...
. . .

...

0 · · · 0 1
2

0 0 · · · −1
2

0





U1

U2

...

Un−2

Un−1


=



F1

F2

...

Fn−2

Fn−1


. (3.8)
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We could, at this point, attempt to verify mathematically that the discrete inf-sup con-

dition holds (or does not hold) for this formulation. However, since it states that all

matrices A will have a unique solution for any F (and therefore be invertible), a singular

counter-example is equivalent to disproving it. It is not difficult to show that, for odd

degrees of freedom (n− 1), the matrix A is singular (see (A.4) for a proof), and thus we

do not have a unique solution. As a result, there is no inf-sup constant that applies to

the entire family of systems defined on Uh, and we have no guarantee of well-posedness

in the even case.

3.1.4 Computations and Analysis

In this discretisation, the even-numbered (n− 1) cases are invertible, affording solutions

to the problem in these spaces. However, these solutions develop oscillations in the ap-

proximation, even for simple functions. For example, if we take u(x) = sin(πx)→ f(x) =

π cos(πx), we can generate the approximations for decreasing h seen in Figure 1.

Figure 1: The uh ∼ sin(πx) approximation with the standard Galerkin method for increasing system

size.
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It appears that the approximation at least ‘converges’ to the correct solution u(x) in

some nebulous sense, but while oscillating backwards and forwards between a reasonable

approximation and some other seemingly arbitrary values. If we plot instead a linear

interpolation of every odd-numbered coefficient, we would find something that looks a lot

more like an approximation to sin(πx) (see Figure 2).

Figure 2: Interpolation of the odd coefficients of the uh ∼ sin(πx) approximation with the standard

Galerkin method for increasing system size.

However, this is a relatively arbitrary construction, and although we could feasibly

demonstrate convergence in the H1-norm for this specific example, the fundamental prob-

lem with this discretisation is its lack of discrete inf-sup conformity in general. We could

not in any sense expect to find a similar convergence for arbitrary data, and could expect

an unstable or perhaps even divergent solution.

Examining the determinants of our systems with even-numbered degrees of freedom,

we observe the following, verified computationally for at least (n− 1) ≤ 10:

det(A) = 2−(n−1)

so here we have det(A) → 0 as h → 0. This may provide some statement about an

approaching ‘singularity’ of the matrix in some sense, or some associated instability, but

without a direct reference to the discrete-inf-sup condition here we could not precisely

say.
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If we are to add an additional basis function to this construction, the solutions that

are generated do not demonstrate an much of an improvement. A full treatment of this

discretisation is available in [4], Sec. 5.5, in which Ern and Guermond demonstrate that

the discrete inf-sup constants exist, but are h-dependent. Thus, as h → 0, the solution

becomes rapidly unstable. For a general source, the standard Galerkin formulation will

ultimately fail in its attempt to approximate the solution to (3.1).
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3.2 A Least-Squares Approach

3.2.1 Problem Definition

The least-squares approach attempts to solve problem (3.1) by first defining an analogous

problem to (3.2). Consider the functionals:

b̃(w, v) =

∫
Ω

w′(x)v′(x)dΩ ∀w, v ∈ H1(Ω) (3.9a)

l̃(v) =

∫
Ω

f(x)v′(x)dΩ ∀v ∈ H1(Ω) (3.9b)

and the new problem:

Find u ∈ H1
(0(Ω) s.t.

b̃(u, v) = l̃(v) ∀v ∈ H1
(0(Ω). (3.10)

Notice here we are setting U = V, which is not necessarily the case for (3.2). Before we

focus on solving this, we may want to note that if we choose the spaces for (3.2) and

rewrite it as

Find u ∈ H1
(0(Ω) s.t.

b(u, v) = l(v) ∀v ∈ L2(Ω) (3.11)

then our problems are actually equivalent: u solves (3.10) iff u solves (3.11) (see [4], Prop.

5.17). Furthermore, if we define the functional

J(w) =
1

2
b̃(w,w)− l̃(w) =

1

2

∫
Ω

(w′)2dΩ−
∫

Ω

fw′dΩ, (3.12)

we may note that, since b̃(u, v) is symmetric, (3.19) is also equivalent to the minimisation

problem:

Find u ∈ H1
(0 s.t

u = arg min
w∈H1

(0

J(w). (3.13)

This is where the least-squares method gets its name (see A.5 for a proof), and the link

between weak formulations of partial differential equations and minimisation problems

remains an important observation during any study of their numerical solution.
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3.2.2 Well-Posedness

Given the equivalence of problems (3.10) and (3.11), (3.10) may ‘inherit’ its well-posedness

from a proof applied to (3.11). However, we can show that b̃(·, ·) is actually a coercive

form:

b̃(v, v) =

∫ 1

0

|v′|2dx = ‖v′‖2
L2(Ω)

≥ 2‖v‖2
L2(Ω) (by the Poincaré-Friedrichs Inequality)

→ 1

2
b̃(v, v) =

1

2
‖v′‖2

L2(Ω)

≥ ‖v‖2
L2(Ω)

→ 3

2
b̃(v, v) =

3

2
‖v′‖2

L2(Ω)

≥ ‖v‖2
L2(Ω) + ‖v′‖2

L2(Ω)

→ b̃(v, v) ≥ 2

3
‖v‖2

H1(Ω). (3.14)

Moreover, if we examine b̃(·, ·) we notice it is in the form attained by performing inte-

gration by parts on the bilinear form associated with the weak form of the classic second

order model problem:

Find u(x) s.t.

u′′(x) = f(x). (3.15)

on which the Lax-Milgram criteria are known to hold, given appropriate boundary con-

ditions (see A.6). Thus, we can safely assume well-posedness and expect any solution to

be bounded in error according to (2.8).

3.2.3 Discretisation

Similarly to the Galerkin formulation, we will discretise by taking H1
(0(Ω)→ Uh = Vh =

P1
cont(Tn) where Tn is again the subdivision of Ω into elements [xi, xi+1], for i = 0, 1, ...n−1

where xi = ih and h = 1
n
. Our basis for Uh are again the hat functions (3.7), but with

the addition of a final ‘half-hat’ function φn:

φn =


1−

∣∣x−1
h

∣∣ 1− h ≤ x ≤ 1,

0 otherwise.

(3.16)
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In this setting, we find that the discrete inf-sup condition holds and we are thus

expecting an invertible matrix and a unique solution (see A.7 for a proof of this). Knowing

this, we set up our system as before (see A.8), now of size n× n, and find:

1

h



2 −1 · · · 0 0

−1 2 · · · 0

...
. . .

...

0 · · · 2 −1

0 0 · · · −1 1





U1

U2

...

Un−2

Un−1


=



F1

F2

...

Fn−2

Fn−1


, (3.17a)

with

Fi =

∫ 1

0

f(x)φ′i(x)dx =
1

h

(∫ xi

xi−1

f(x)dx−
∫ xi+1

xi

f(x)dx

)
. (3.17b)

Before we continue, we might remark that the system we would get from a Petrov-

Galerkin formulation of (3.11) would be functionally identical. This follows from the

idea that the ‘natural’ discretisation space for H1(Ω) is a piecewise linear space P1
h(Ω),

while for L2(Ω) we would choose a piecewise constant space P0
h(Ω). Since the derivative

operator maps P1
h(Ω) to P0

h(Ω), the problem statements at the discrete level are also the

same. Since we are approximating in a well-posed environment with piecewise linear

interpolation, we may note that convergence is implied by the following standard result

(see [5], Prop. 1.2):

‖u− uh‖L2(Ω) ≤ Ch2‖u′′‖L2 . (3.18)

So we expect a convergence rate of O(h2), or a reduction of a factor four of the error in

the L2-norm as a result of halving h. This, of course, requires at least u ∈ H2(Ω). We will

present test cases for both u ∈ H2(Ω)) and u /∈ H2(Ω) to demonstrate how this affects

convergence.
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3.2.4 Computations and Analysis

Solutions for these functions converge graphically very quickly, and by eye the graphs of

the solution and its approximation are indistinguishable. For example, take the following

approximations of the function u(x) = 10x(1− x)(x− 1
4
):

Figure 3: The uh ∼ 10x(1−x)(x− 1
4 ) approximation with the least-squares method for increasing system

size.

This demonstrates some significant approximability on its own, and a set of log-log

plots of the error in the L2-norm against the system size n for various functions (Figure

4) shows O(h2) convergence (so long as u(x) ∈ H2(Ω)). The first four plots here are

for arbitrary functions with u ∈ H2(Ω) (in fact, most if not all are in H∞(Ω)). All four

demonstrate O(h2) convergence in the L2-norm, corresponding to a slope of ∼ −2. The

last two plots have u(x) /∈ H2(Ω), and so their lack of second derivative means (3.18)

does not apply. While they appear to be converging, they are doing so sub-optimally.
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Figure 4: Log-Log plots for the errors associated with the approximations of several functions u(x) ∈ H2

and u(x) /∈ H2 calculated with the least-squares method.

The least-squares method is appropriate for many functions in one dimension. Its key

difference from the standard Galerkin method was a choice of the combination of spaces

and problem setting such that the discrete inf-sup condition holds. If we have this, we

will always have a well-posed problem.
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3.3 Closing Remarks on One-Dimensional Finite Element Meth-

ods

3.3.1 Other Methods

For partial differential equations of first-order (or more generally, odd order), classic finite

element methods do not give sufficient approximability. A whole range of additional

methods in one dimension and beyond have been developed in part to deal with this

issue, (each with their own particular advantages and disadvantages), including:

• Diffusion methods inc. Streamline Diffusion methods ([6], Sec. 9.7).

• Variational Multiscale methods [7].

• Discontinuous Galerkin and Petrov-Galerkin methods [8].

• Minimal-Residual methods inc. DDMRes [1].

In our shift to two dimensions, we will be focusing on the last of this list, one of

the newer developments in finite element methods, and performing novel calculations on

a set of meshes to demonstrate convergence of its approximation to the solution of the

advection-reaction equation.
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4 Two Dimensions: Advection-Reaction

4.1 Problem Overview

4.1.1 Equation, Variational Forms and Graph Spaces

The general form of the equation under consideration in two dimensions is:

β(x) · ∇u+ µ(x)u = f(x) u ∈ Ω ⊂ R2, (4.1a)

u = g(x) u ∈ Γ−, (4.1b)

where β : x→ R2 is some vector field over Ω (termed the flow or velocity field), µ : x→ R

is the ‘reaction rate coefficient’, f is our source data, and g is some nonhomogeneous

boundary data (specified purely on the inflow). The boundary Γ is split into three parts

- the inflow, outflow, and characteristic sections:

Γ− = {x ∈ Γ : β(x) · n̂(x) < 0} (4.2a)

Γ+ = {x ∈ Γ : β(x) · n̂(x) > 0} (4.2b)

Γ0 = {x ∈ Γ : β(x) · n̂(x) = 0} (4.2c)

where n̂ is the unit-outward normal on Γ. To construct our variational form, we will allow

µ(x) = 0 (focusing purely on Advection, the difficult part of the analysis) and integrate

over both sides of the equation with a test function v ∈ L2(Ω) to obtain∫
Ω

(β · ∇u)v dΩ =

∫
Ω

fv dΩ. (4.3)

By performing this step, we are implicitly requiring u to be a member of a graph space

on Ω, during the construction of which we can impose the boundary conditions:

W−(β; Ω) = {v ∈ L2(Ω) : (β · ∇v) ∈ L2(Ω), v = g on Γ−}. (4.4)

A different (more ‘weak’) form may be obtained by performing an integration by parts

on the left hand side of the equation. We find:∫
Ω

(β · ∇u)v dΩ = −
∫

Ω

u(∇ · βv) dΩ +

∫
Γ

uv(β · n̂)dΓ.
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The boundary term can be written as a combination of integrals over the three sections:∫
Γ

uv(β · n̂) =

∫
Γ+

uv(β · n̂)dΓ+ +

∫
Γ0

uv(β · n̂)dΓ0 +

∫
Γ−

uv(β · n̂)ddΓ−

=

∫
Γ+

uv(β · n̂)dΓ+ +

∫
Γ−

uv(β · n̂)dΓ− (since β · n̂ = 0 on Γ0).

If we impose on v membership of the graph space

W+(β; Ω) = {v ∈ L2(Ω) : ∇ · (βv) ∈ L2(Ω), v = 0 on Γ+} (4.5)

then we may write the weak form as

−
∫

Ω

u(∇ · βv) dΩ =

∫
Ω

fv dΩ +

∫
Γ−

gv|β · n̂|dΓ− (4.6)

since u = g, β · n̂ < 0 on Γ−.

4.1.2 Well-Posedness

The well-posedness of this equation in the Hilbert space setting is known in the case of

non-homogeneous boundary conditions, subject to several restrictions on g,β, and Γ ([9],

Thm. 2.12). The most important of these for our purposes is the requirement that the

inflow and outflow boundaries are ‘well-seperated’ (i.e the smallest distance between an

element of Γ+ and Γ− is nonzero). However, as noted by ([1], Remark 2.9 and Theorem

A), if β is sufficiently regular, then we still have well-posedness by way of the assertion

that the system is solvable with the method of characteristics. For the remainder of our

analysis, we will assume β is constant, which satisfies this condition.
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4.2 Discretisation

4.2.1 Petrov-Galerkin

In the one-dimensional case, we might wish to apply a Petrov-Galerkin methodology,

where we take U→ P0(Tn), V→ P1
cont(Tn) and our problem statement (letting β = 1, g =

0) becomes:

Find uh ∈ P0(Tn) s.t.

−
∫

Ω

uhv
′
hdΩ =

∫
Ω

fvhdΩ ∀vh ∈ P1
cont(Tn) (4.7)

In this case, for any general triangulation Tn divided, for example into n elements, a basis

for P0(Tn) having n members can be constructed, one for each element in Tn. A basis

for P1
cont(Tn) constructed of hat functions would have n+ 1 members, one for each ‘node

point’ (or vertex ) in Tn. However, with the boundary condition vh|Γ+ = 0 we see that

the same set excluding the member centered at Γ+ is also a valid basis. The resultant

set would have n elements. Thus, we can in general have a Petrov-Galerkin application,

since we require dim(Uh) = dim(Vh).

However, in two dimensions, the process is not so straightforward. If we wish to define

Uh,Vh on the same triangulation Tn, for general inflow boundary (and therefore general

curvilinear β), we would be restricted to those meshes and flows in which the number of

vertices, excluding the vertices that lie on Γ+, is coincidentally equal to the number of

elements in the mesh. It is not difficult to convince oneself that this is unlikely in general.

Additionally, one might note that in the resultant system of linear equations, the number

of equations is dictated by dim(Vh), and the number of unknowns by dim(Uh). For this

reason, it is clear that any method we generate requires at least dim(Uh) ≤ dim(Vh).

For Petrov-Galerkin, there are methods to circumvent this problem. One way would

be to choose a triangulation Tn such that the resultant mesh is ‘flow-aligned’ for a given

β. This allows the mesh to be partitioned (into say, m submeshes T mn ) such that on each

partition, dim(Ui
h) = dim(Vi

h) (i = 1, ...,m), and as such the method can be performed

on each submesh independently. However, this will naturally introduce discontinuities

in the P1 test space across the submesh boundaries. Another way is to build the spaces

on different meshes, such that the test space mesh is a conformal refinement of the trial
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space mesh (i.e Uh = P0(Tn),Vh = P1
cont(R(Tn)), where R(·) is an operator defining some

refinement of the mesh). Building one as a refinement of the other is not technically

necessary, but is extremely useful for practical calculation purposes. It is likely that for

any mesh, we can construct some arbitrary refinement that would introduce exactly the

correct number of degrees of freedom to make the system square, but this solution is

inelegant, situationally dependent and impractical. A superior method would allow us to

take any mesh, for any flow, apply some structured refinement to it, and still be able to

solve the resultant system. Petrov-Galerkin by itself is inadequate for this purpose.

4.2.2 The Discrete-Dual Minimal-Residual Method

The Discrete-Dual Minimal-Residual method (DDMRes) can be thought of as a gener-

alisation of Petrov-Galerkin to discrete formulations where dim(Uh) 6= dim(Vh). The

scheme introduces the discrete residual

ρh = f − Awh ⊂ (Vh)
∗ (4.8)

which is, in some sense, a measure of the inability of an attempt, wh to solve the problem.

The idea is to minimise ρh with respect to the norm of (Vh)
∗, the dual of the finite

dimensional subspace of V. This norm is defined (for some ψh ∈ (Vh)
∗)as

‖ψh‖(Vh)∗ = sup
vh∈Vh

〈ψh, vh〉V∗,V

‖vh‖V
. (4.9)

If we have the pairings as defined in (2.3), we may write

‖ρh‖(Vh)∗ = sup
vh∈Vh

l(vh)− b(wh, vh)
‖vh‖V

. (4.10)

We now seek the solution as the argument that produces the minimum residual over all

wh, and our problem is defined:

Find uh ∈ Uh s.t.

uh = arg min
wh∈Uh

‖ρh‖(Vh)∗ . (4.11)

It can be shown (see A.9 for a proof) that this problem is equivalent to the following:

Find uh ∈ Uh, rh ∈ Vh s.t.

(rh, vh)V + b(uh, vh) = l(vh) ∀vh ∈ Vh (4.12a)

b(wh, rh) = 0 ∀wh ∈ Uh. (4.12b)
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The well-posedness of the problem in this form was shown in [1], Thm. B, from which we

also recover the a priori error estimate

‖u− uh‖L2(Ω) ≤ C inf
wh∈Uh

‖u− wn‖L2(Ω). (4.13)

Following from (4.9), where V is the graph space W+(β;ω), we obtain the system of

equations:

Ri

∫
Ω

∇ · (βφi)∇ · (βφj))dΩ + Uk

∫
Ω

∇ · (βφi)ψkdΩ

=

∫
Ω

fφidΩ +

∫
Γ−

gφi|β · n̂|dΓ−,∫
Ω

∇ · (βφj)ψkdΩ = 0 i, j = 1, ..., dim(Vh), k = 1, ..., dim(Uh)

This can be arranged into a single system AX = F, where

A =

 B C

CT 0

 , X =

R

U

 , F =

L

0

 ,

Bij =

∫
Ω

∇ · (βφi)∇ · (βφj))dΩ,

Cki =

∫
Ω

∇ · (βφi)ψkdΩ,

Li =

∫
Ω

fφidΩ +

∫
Γ−

gφi|β · n̂|dΓ−,

and (R,U) are the column vectors representing the coefficients for (rh, uh) respectively.

We note that in the case dim(Uh) = dim(Vh), R = 0 and we are performing a Petrov-

Galerkin scheme. This is why DDMRes can be thought of as an extension to Petrov-

Galerkin methods.

In our Implementation, we will be using the trial space Uh = P0(Tn) - the set of piece-

wise constants defined on our triangulation Tn. Our test space will be Vh = P1
cont(R(Tn)

- the set of continuous piecewise linear functions defined on a refinement of the triangu-

lation. In this scenario (and in particular, due to the piecewise constant approximation

of the solution u), we are expecting approximability of the form:

‖u− uh‖L2(Ω) ≤ ch‖u′‖L2(Ω) (4.14)

as shown by [4], Corollary 1.122. As a result, we note an optimal convergence rate in

this setting constitutes O(h) dependence, and we broadly expect to observe this in any

calculations.
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4.3 Implementation

4.3.1 The Peterson Mesh

The two-dimensional triangulation Tn we will be using for our trial space is the so-called

Peterson Mesh ([10]), which is best defined graphically:

Figure 5: The Peterson Mesh on the unit square with degree n = 2, defined for n = 1
h (such as to be the

number of partitions of the horizontal boundaries, analogously to the one-dimensional case.)

In two dimensions, elements are not defined along a straight line, but rather as a

connection of three members of the set of vertices associated with the mesh. As a result,

any two-dimensional mesh is necessarily defined by two matrices: V (a Vertex Array)

- a 2 × Nverts-sized matrix, where each row i contains the (x, y) co-ordinates of the ith

vertex (ordered in some way) - and C (a Connectivity Array) - a 3×Nelems-sized matrix,

where each row j contains the 3 vertices that make up the jth element, in terms of i (its

corresponding row index in V). The ordering of the vertices and elements in these arrays

can be arbitrary, but when implementing a finite element scheme, it is beneficial to do so

in some structured way that the implementation can then exploit. For our purposes, we

will be ordering each vertex or element from left-to-right, and then from bottom to top

(see Figure 6).

26



Figure 6: A numbering convention of the Peterson mesh - Red numbers denote vertices, blue numbers

denote elements.

4.3.2 Mesh Refinement

To refine a Peterson mesh, I propose two techniques. The first is the so-called ‘red’

refinement scheme that can be applied to any mesh. It loops over the elements, and

divides each one into four smaller triangles such that all they all have the same area, and

the vertices of the center triangle is defined by the midpoints of each edge. Since this

refinement works for any mesh, it can be applied an arbitrary number of times to the

same mesh if one application does not merit sufficient resolution (see Figure 7).

Figure 7: Procedural refinements of the n = 2 Peterson Mesh. The same numbering system for ver-

tices/elements is applied to these.

27



The second refinement is specific to the Peterson Mesh, and is simply the addition of

vertical lines every h
2

units to the mesh (see Figure 8). While it does not have implemen-

tation possibilities for general meshes, the specific nature of the refinement makes it useful

for the cases where the flow is precisely constant in one of the four cardinal directions

relative to the axes.

Figure 8: Vertical Refinement for n = 2 on the Peterson Mesh. Note this has the effect of partitioning

the mesh into 4n2 squares of width h
2 .

4.3.3 A Basis for the Trial and Test Spaces

The basis for our trial space, Uh = P0(Tn), is a set of functions on each element τi,

i = 1, ..., Nelems s.t.

ψi(x, y) =


1 (x, y) ∈ τi

0 (x, y) /∈ τi

The test space, Vh = P1
cont(R(Tn)), has a more complicated basis, defined analogously

to the ‘hat-functions’ (3.14) but in the two-dimensional sense. The most helpful way to

define these functions (especially in terms of the computational application) for a given

vertex Vi is to consider a small, localised submesh of R(Tn) containing only those elements
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that Vi is associated with. For example, the basis function associated with V9 in Figure

6 would be nonzero only within {τ7, τ8, τ9, τ12, τ13, τ14}. These elements would be defined

in terms of a local vertex and connectivity array. The example function is built such that

is is exactly 1 at V9, and decreases linearly along the lines connecting it to all adjacent

vertices {V5,V6,V8,V10,V12,V13}, where it is 0. The function value inside the elements is

defined by the planes that connect the linear functions on the edges, and 0 everywhere

outside the submesh. The resultant shape is ‘pyramid-like’ (see Figure 9).

Figure 9: The Basis Function for V9 in the n = 2 Peterson Mesh.

We have in total Nverts functions that can be defined on the mesh, but since we have

P1
cont(R(Tn)) ⊂ W+(β; Ω), we must necessarily exclude those basis functions on vertices

that lie on the outflow boundary, the number of which we shall call Noutflow(R(Tn)). To

make the system solvable, we need to satisfy dim(Vh) ≥ dim(Uh), and so require

Nverts(R(Tn))−Noutflow(R(Tn)) ≥ Nelems(Tn)) (4.15)

It can be shown that for just a single application of the red refinement scheme, we satisfy

(4.15) for all n,β, whereas the ‘vertical line’ refinement achieves strict equality in (15) for
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the case where beta is precisely (0, α)T or (α, 0)T ∀α ∈ R. Proofs of these propositions

can be found in the appendix (A.10 and A.11).

4.3.4 Code Implementation and Class Structure

From a coding implementation standpoint, the system takes the form of several interacting

classes, each with its own properties and methods. Some of these classes were built for

more general use. For example, the main code is built to handle any general mesh, not just

the Peterson meshes, and any refinement on that mesh, as long as the resultant system

is solvable.

To handle basic Matrix manipulation, I developed a class to handle Matrices, housing

the Gaussian Elimination method that is used to solve the resultant system. Similarly, a

class to handle Vectors was used. These two classes are effectively the base code on which

the two next classes are built.

One of these is a class to store meshes, in terms of their vertex and connectivity arrays.

Associated with this mesh is a red refinement scheme, which can be applied an arbitrary

number of times to any mesh. Also built was a ‘vertical lines’ refinement method, which

can only be applied specifically to a Peterson mesh, and only once. Additionally on this

class, I designed other methods to aid the construction of the system, including access

methods for the connectivity/vertex arrays in terms of their index.

The other class stored the information associated with the P1
cont basis functions as

described in Figure 9. The information is stored in terms of a Matrix of co-ordinates, the

first being the center vertex, and the remaining points denote the surrounding vertices

in a structured way. Since these are being built on some Mesh object, we also have a

local connectivity matrix associated with this class, to describe which combination of these

vertices make up the elements in the underlying mesh. Among other methods developed to

make the computations more clear (like calculating areas, evaluating particular integrals,

returning the gradient in a given direction or the value of the basis function at a given

point) is a unique method to resolve whether or not a certain point in two-dimensional

space lies within a triangle, taken from [11].

The bulk of the main operation routine works as follows:
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• Initialise Peterson mesh of degree n, and refine with one of the two refinement

schemes.

• Initialise an array of basis function objects with size equal to the number of vertices

in the test space.

• Loop over the objects, assigning their center and external vertices in terms of their

local connectivity arrays.

• Initialise trial space with Peterson mesh of degree n.

• Initialise the matrix to house B, and loop over the basis function array twice to set

its values in terms of the relevant integrals.

• Initialise the matrix to house C, and loop over the basis function array with the

trial space connectivity array to set its values in terms of those integrals

• Combine these two Matrices to obtain A.

• Remove the unnecessary indices of A associated with outflow vertices

• Initialise F, looping over the basis function array to assign values in terms of the f

integrals.

• Loop over the basis functions associated with inflow vertices and perform the line

integrals associated with g to add to F.

• Remove the indices of the F associated with outflow vertices.

• Initialise an empty solution vector U and perform Gaussian Elimination on the

system AU = F to solve the system.

Focusing on the efficiency of the main routine is useful, but the computation time of

the whole process is almost entirely dictated by the solution algorithm. The Gaussian

Elimination algorithm runs at effectively O(n5) in terms of the degree n of the Peterson

mesh. This dependence can be mediated with the introduction of selective refinement

methods (as we will see in section 4.4), but meaningful progress for the efficiency of this
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routine would necessarily depend on the inception of a different solution procedure, per-

haps one that exploits the properties of the system to reduce the number of calculations.
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4.4 Computations and Analysis

Computations were performed exclusively with constant β on pairs of Peterson meshes

of degree n = 2α with their corresponding refinement in either the red or vertical line

refinement schemes. Errors in the solution were measured in the L2-norm of u− uh and

∇ · (βrh), both of which are expected to demonstrate ∼ O(h) convergence. Since the

solution uh is given in terms of a piecewise constant basis, a MATLAB scheme was used

to interpolate the data onto a uniform grid before display. This interpolation is performed

after the norms are calculated, so are purely for aesthetic purposes and do not affect the

data on display in this section.

4.4.1 Test Cases Demonstrating O(h) Convergence

Initial tests of the implementation were restricted to cases where either f = 0 or g = 0,

and with β = (0, 1)T. The first allows f = 0 by setting

u(x, y) = sin(πx)→ g = sin(πx)

Here, β and g do not interact, so the resultant system is functionally identical (as long

as β1 = 0). The plots for 4-16 are interpolated onto a 50× 50 grid for the red refinement

(see Figure 10) and the vertical line refinement (Figure 11). The data on the Errors

is shown in Tables 1 and 2. For both we can see O(h), optimal for this discretisation.

The efficiency bonus afforded to the vertical refinement scheme was the motivation for its

design. Because the solver performing Gaussian Elimination is an O(m3) process, where

m is the number of equations, and doubling n produces O(n2) equations, we expect our

computation time to increase by a factor of ∼ 25 upon doubling n. This is observed in

both tables. The next test case (to allow g = 0) will be

u(x, y) = ex(1− cos(y))→ f(x, y) = ex sin(y)

Similarly, the data is displayed for both the red refinement (Figure 12 and Table 3) and

the vertical refinement schemes (Figure 13 and Table 4). A similar ‘crinkling effect’ is

observed here, and again we see O(h) convergence in both norms, with an increase in the

efficiency for the vertical line refinement and less pronounced artifacts.
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Figure 10: u = sin(πx) approximated on the Peterson mesh and red refinement scheme for n = 2, 4, 8, 16.

Note the ‘paper crinkling effect’, less pronounced as n doubles. These artifacts are likely a combination

of the lack of resolution in the trial space combined with the interpolation being performed by MATLAB.

n ‖(u− uh)‖L2 Error Ratio ‖∇ · (βrh)‖L2 Error Ratio Time Taken (s)

1 0.26475 N/A 0.209345 N/A 0.0099975

2 0.186375 1.42052 0.145107 1.4427 0.0329901

4 0.107935 1.72674 0.0848735 1.70968 0.189938

8 0.0566188 1.90634 0.0454206 1.86861 3.00004

16 0.0289472 1.95593 0.0234832 1.93418 136.699

Table 1: Data on the errors and time taken to compute the approximations to u = sin(πx) with the red

refinement scheme.
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Figure 11: u = sin(πx) approximated on the Peterson mesh and vertical line refinement scheme for

n = 2, 4, 8, 16. The ‘paper crinkling’ is significantly less pronounced here.

n ‖(u− uh)‖L2 Error Ratio ‖∇ · (βrh)‖L2 Error Ratio Time Taken (s)

1 0.274796 N/A 0 N/A 0.0059896

2 0.18606 1.47692 0 nan 0.011996

4 0.103903 1.7907 0 nan 0.109472

8 0.054416 1.90943 0 nan 0.992939

16 0.0277874 1.9583 0 nan 29.0517

Table 2: Data on the errors and time taken to compute the approximations to u = sin(πx) with the

vertical line refinement scheme. Note the decreased computation time and 0 in the second norm - both

are the result of the reduction of this method to a Petrov-Galerkin scheme (A.1).
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Figure 12: u = ex(1 − cos(y)) approximated on the Peterson mesh and red refinement scheme for n =

2, 4, 8, 16. The crinkling effect is less obvious but still apparent in the solution.

n ‖(u− uh)‖L2 Error Ratio ‖∇ · (βrh)‖L2 Error Ratio Time Taken (s)

1 0.123497 N/A 0.106748 N/A 0.0336696

2 0.0677552 1.82269 0.052462 2.03476 0.0259918

4 0.034094 1.98731 0.0272727 1.92361 0.178954

8 0.0170218 2.00295 0.0140261 1.94443 2.94505

16 0.00849502 2.00374 0.00712532 1.96848 93.9316

Table 3: Data on the errors and time taken to compute the approximations to u = ex(1 − cos(y)) with

the red refinement scheme.
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Figure 13: u = ex(1 − cos(y)) approximated on the Peterson mesh and vertical line refinement scheme

for n = 2, 4, 8, 16. Again, the crinkling effect is less pronounced, and the solution becomes smooth much

more quickly.

n ‖(u− uh)‖L2 Error Ratio ‖∇ · (βrh)‖L2 Error Ratio Time Taken (s)

1 0.119126 N/A 0 N/A 0.0089972

2 0.0640472 1.85997 0 nan 0.0129952

4 0.0328671 1.94867 0 nan 0.0679782

8 0.0166132 1.97838 0 nan 0.955705

16 0.00834778 1.99013 0 nan 29.0215

Table 4: Data on the errors and time taken to compute the approximations to u = ex(1 − cos(y)) with

the vertical line refinement scheme. Again, the computation time is superior to the red refinement. We

also have reduced this problem to a Petrov-Galerkin scheme, as before.
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4.4.2 Horizontal Flow - Singularity in the Vertical Refinement Scheme

If we take u = ex(1− cos(y)) as before, but with β = (±1, 0)T , we get

f = ±ex(1− cos(y)), g = (1− cos(y)) or g = e(1− cos(y))

We see in the data for both directions, in the red refinement scheme, that we are still

converging optimally in both norms (Table 5). However, a surprising result is that the

vertical refinement scheme results in a singular matrix for horizontal flow. Since it was

designed specifically to handle purely vertical or horizontal flow, the reason for this is

unclear. On inspection of any example system, it is easy to see that two of the columns

are actually identical, so the singularity is readily apparent. This may have something to

do with an unfortunate combination of the symmetries of the mesh with the column/row

exclusions in the system as a result of the boundary conditions, but further investigation

would be required to confirm this.

n ‖(u− uh)‖L2 Error Ratio ‖∇ · (βrh)‖L2 Error Ratio Time Taken (s)

1 0.130488 N/A 0.085587 N/A 0.0101011

2 0.0717243 1.81929 0.0375493 2.27932 0.0249919

4 0.0373774 1.91892 0.0176178 2.13133 0.198936

8 0.0190475 1.96232 0.00855332 2.05976 3.24599

16 0.00961001 1.98205 0.00421709 2.02825 104.762

Table 5: Data on the errors and time taken to compute the approximations to u = ex(1− cos(y)) in the

flow directly right/left case. The data for the errors in the norms is actually identical.
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4.4.3 General Flow Direction

Our final system examination will be one employing an arbitrary flow direction and 0 in

the source term. By specifying an arbitrary g over the inflow boundary, we expect to see

the function translated through the unit square in the direction of β, and as such, the

solution u(x, y) will be constant on the streamlines. If we define (x0, 0)T and (0, y0)T as

the two straight lines defining the inflow boundary, we can write:

u(x, y) =


g(x0, x− y β1β2 (x− x0)) if streamline begins on the x0 boundary

g(y − xβ2
β1

(y − y0), y0) if streamline begins on the y0 boundary

If we choose (e.g)

g = ex cos(πy), β = (1, 1)T

then we expect

u(x, y) =


cos(π(x− y)) if streamline begins on the x0 boundary

ey−x if streamline begins on the y0 boundary

n ‖(u− uh)‖L2 Error Ratio ‖∇ · (βrh)‖L2 Error Ratio Time Taken (s)

1 0.478423 N/A 0.187811 N/A 0.0099968

2 0.246833 1.93824 0.0602879 3.11523 0.0369881

4 0.130464 1.89197 0.0247972 2.43123 0.211932

8 0.0669735 1.94799 0.00851919 2.91075 3.17598

16 0.0338256 1.97996 0.0029388 2.89887 106.032

Table 6: Data on the errors and time taken to compute the approximations to g = ex cos(πy) translated

through the unit square for β = (1, 1)T.
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Figure 14: Two angles for the plot of the approximation to g = excos(πy) translated through the unit

square for β = (1, 1)T, n = 16.

The plot of the solution uh is shown for n = 16 in Figure 14, and the convergence data

in Table 6. We see from the second image in Figure 14 how the solution remains constant

on the streamlines, and is effectively one-dimensional given the correct orientation. We

also again note optimal O(h) convergence in the L2-norm for (u − uh) but, strangely,

∼ O(h1.585) convergence in the other. The reason for this is unclear.

Additionally, on computation of the solutions in the general flow direction case, I

noticed an ambiguity in the treatment of the corner vertices of the mesh (or more precisely,

ambiguity in the direction of its unit-outward normal, which is the source of this issue).

For any corner vertex, one could ‘reasonably’ allow the unit-normal to be any value in the

range of angles between the perpendiculars drawn to the two edges that define it. For any

‘non-cardinal’ flow, the two corners present ‘along’ the flow direction are unambiguously

inflow/outflow vertices, in that any reasonable ‘choice’ of unit-outward normal vector

would give the same answer in terms of (4.2). However, the other two can be a member of

the inflow set, outflow set or the characteristic set depending on the precise definition of

n̂. In this case, O(h) convergence is only observed in the results if one assumes that these

corner vertices are in all three sets simultaneously! In the context of this implementation,

it means that the relevant line integrals are calculated as if it were an inflow vertex, but
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the index is excluded from the final system as if it were an outflow vertex. This is a

surprising requirement, and is likely a consequence of the lack of ‘well-separated’ inflow

and outflow in the case of any square mesh.
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5 Conclusions

After a demonstration of the unsatisfactory approximation standard for solutions in first-

order PDEs at the one-dimensional level, several more stable systems have been inves-

tigated. For one dimension we see that the least-squares method performs optimally in

approximations of functions in H2, and still converges, albeit not optimally, to others

in lower order Sobolev spaces. The system, obtained by setting up the weak form of

the problem analogously to a second order PDE of similar form, demonstrates a way to

consider a ‘classically’ non-coercive problem such as one-dimensional advection. For two-

dimensional advection, testing of simple functions over the unit square with the Peterson

mesh saw O(h) convergence in the L2-norm of the error, although both refinement meth-

ods demonstrated unusual ‘crinkling’ phenomena in the solution for lower resolutions.

The vertical line refinement demonstrated an efficiency (and moderate accuracy) boost

for a given degree of triangulation n in the flow-up case, but unexpectedly generates a

singular system in the horizontal flow case, which was partial motivation for its design.

The red refinement scheme also performs optimally in the constant β case for general

angle, and converges to a similar order in the L2-norm for up to n = 16.

In this setting, the red refinement scheme performs well on the Peterson mesh in the

constant flow case, and although it is inefficient (requiring more integrals to be calcu-

lated than are necessary), allowing dimUh ≤ dimVh is the useful feature of DDMRes in

general. Boosts to performance efficiency can be found in specialised refinements on a

case-by-case basis, but it is advantageous to have a scheme that will be able to find a

procedural refinement of any mesh with a sufficient number of vertices.

The results provide an insight into the behaviour of the DDMRes method within the

context of this simplified setting, and verify its capacity to converge on a given solution

optimally, as a marked improvement over previous attempts to solve advection problems

on the Peterson mesh (as with discontinuous Galerkin formulations).

The nature of this dissertation provides several directions for further study into the topic,
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with an emphasis on investigating more general meshes (perhaps on convex polygonal

domains), curvilinear flow, nonzero reaction coefficients, and investigating the approxi-

mation of discontinuities in the solution. In terms of solving the system, the key problem

was the use of a general-purpose Gaussian Elimination scheme for a matrix system that

was usually quite sparse. A significant performance boost to the method as performed

here would be to investigate exploitable properties of the resultant systems such that a

dedicated solution algorithm could be developed. If this was, say O(n2), solutions of

significantly higher resolution would be reachable with a reasonable computation time.

The design of algorithms for the project was done in an intentionally general and modular

way, such as to allow these extensions to become natural and allow the project to be as

open-ended as possible.
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A Appendix

A.1 Coercivity and Positive Definiteness

A Positive Definite matrix A ∈ Rd can be defined as one for which the scalar value

xTAx > 0 ∀x 6= 0 (A.1)

and we may write this in terms of the summations performed as

d∑
i

xi

(
d∑
j

Aijxj

)
. (A.2)

On discretisation, our bilinear form will written as b(wh, vh) where wh, vh ∈ Uh ⊂ U.

Therefore, we have b(wh, wh) = c0‖wh‖2
U ≥ 0 from coercivity. Furthermore, we can write

wh as a linear combination of a set of basis functions for Uh, and our matrix Aij is

equivalent to b(φi, φj), where the φ are the basis functions. Thus, we find

b(wh, wh) = b(
d∑
i

xiφi,
d∑
j

xjφi)

=
d∑
i

xi

(
d∑
j

xjb(φi, φi)

)
= xTAx ≥ 0 ∀x ∈ Rd (A.3)

We now see that from coercivity, equality in (eqn A.3) is achieved iff the ‖wh‖U = 0,

which occurs iff wh = 0→ x = 0, and so finally we have

xTAx > 0 ∀x 6= 0. �
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A.2 Generating Céa’s Lemma from Well-Posedness Assump-

tions

The well-known Galerkin Orthogonality can be constructed from (2.3) and (2.5) like this:

Since vh ∈ V, we may write

b(u, vh) = l(vh) = b(uh, vh)

→ b(u, vh)− b(uh, vh) = 0

→ b(u− uh, vh) = 0 ∀vh ∈ Vh. (A.4)

Now we generate the inequality by observing that

‖u− uh‖U = ‖u− wh − (uh − wh)‖U

≤ ‖u− wh‖U + ‖uh − wh‖U ∀wh ∈ Uh. (A.5)

The discrete inf-sup condition tells us that

sup
vh∈Vh

b(wh, vh)

‖vh‖V
≥ γ̂‖wh‖U ∀wh ∈ Uh

→ sup
vh∈Vh

b(uh − wh, vh)
‖vh‖V

≥ γ̂‖uh − wh‖U ∀wh ∈ Uh. (A.6)

Using (A.4), we can write b(uh − wh, vh) as b(u− wh, vh), and so we have

‖u− uh‖U ≤ ‖u− wh‖U +
1

γ̂
sup
vh∈Vh

b(u− wh, vh)
‖vh‖V

≤ ‖u− wh‖U +
1

γ̂
sup
vh∈Vh

c1‖u− wh‖U‖vh‖V
‖vh‖V

≤
(

1 +
c1

γ̂

)
‖u− wh‖U ∀wh ∈ Uh

→ ‖u− uh‖U ≤ inf
wh∈Uh

(
1 +

c1

γ̂

)
‖u− wh‖U. �
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A.3 Constructing the Standard Galerkin System in One Dimen-

sion

Since supp(φi) = supp(φ′i) = [xi−1, xi+1] of width 2h in the integrand, we note that Aij = 0

if |i − j| > 1. Thus, the system is tridiagonal and we have 3 cases to investigate. If

i = j:

Aij =

∫
Ω

φiφ
′
idx

=

∫ xi+1

xi

φiφ
′
idx+

∫ xi

xi−1

φiφ
′
jdx

=
1

h

∫ xi+1

xi

φidx−
1

h

∫ xi

xi−1

φidx

= 0 (φi symmetrix about x = xi). (A.7)

If i = j − 1

Aij =

∫
Ω

φiφ
′
jdx

=

∫ xi+1

xi

φiφ
′
idx

=
1

h

∫ xi+1

xi

φidx

=
1

h

(
h

2

)
=

1

2
. (A.8)

If If i = j + 1

Aij =

∫
Ω

φiφ
′
jdx

=

∫ xi

xi+1

φiφ
′
idx

= −1

h

∫ xi+1

xi

φidx

= −1

h

(
h

2

)
= −1

2
. (A.9)

And so we obtain A as seen in (3.8). �
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A.4 A Proof of the Singularity of (3.8) in the Odd Dimensional

Case

If we consider any n × n matrix A with only nonzero entries in the upper and lower

diagonal such that (for, e.g, n = 5)

0 α 0 0 0

−α 0 α 0 0

0 −α 0 α 0

0 0 −α 0 α

0 0 0 −α 0


. (A.10)

We recall that if A is invertible, then its columns are linearly independent of one another,

so writing one column as a linear combination of the other is equivalent to showing a

singular matrix. We can write the columns (denoted Ci) in terms of their basis vectors

êj and see that in general we have

Ci =


αêi−1 − αêi+1 i 6= 1, n

−αêi+1 i = 1

αêi−1 i = n.

(A.11)

If n is odd, we can write it as 2m + 1, where m is even. If we now consider the negative

of the sum of the odd-numbered columns up to but not including n, we see:

−
m∑
i=1

C2i−1 = −(C1 + C3 + ...+ C2m−3 + C2m−1)

= −α(−ê2 + ê2 − ê4 + ê4 + ...+ ê2m−4 − ê2m−2 + ê2m−2 − ê2m)

= αê2m

= C2m+1. �

47



A.5 The Equivalence of Problems (3.10) and (3.13)

We begin with the equation (3.10), and assume u denotes the unique solution. Then,

∀w ∈ H1
(0:

J(w)− J(u) =
1

2
b̃(w,w)− 1

2
b̃(u, u) + l̃(u− w)

=
1

2
b̃(w,w)− 1

2
b̃(u, u) + (̃b)(u, u− w)

=
1

2
b̃(w,w)− 1

2
b̃(u, u) + b̃(u, u)− b̃(u,w)

=
1

2

(
b̃(w,w) +

1

2
b̃(u, u) + 2b̃(u,w)

)
=

1

2

(
b̃(w,w) +

1

2
b̃(u, u) + b̃(u,w)− b̃(u,w)

)
=

1

2

(
b̃(w − u,w) +

1

2
b̃(u, u− w)

)
=

1

2

(
b̃(w − u,w − u)

)
≥ c0

2
‖w − u‖1

H(Ω)

≥ 0. (A.12)

If this is the case, then we have J(w) ≥ J(u) ∀w, or equivalently

u = arg min
w∈H1

(0

J(w). �
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A.6 Lax Milgram Criteria Verification for (3.10)

Since it is trivial to show bilinearity for b̃(·, ·) and linearity for l̃(·), we will simply demon-

strate the continuity of both operators for completeness.

For continuity of b̃(·, ·) , we have:

|b(w, v)| =

∣∣∣∣∫
Ω

w′(x)v′(x)

∣∣∣∣
≤ ‖w′‖L2(Ω)‖v′‖L2(Ω)

≤ (‖w′‖2
L2(Ω)‖w‖2

L2(Ω))
1
2 + (‖v′‖2

L2(Ω) + ‖v′‖2
L2(Ω))

1
2

≤ ‖w‖H1(Ω)‖v‖H1(Ω) (A.13)

and so the constant c1 = 1.

For continuity of l̃(·) , we have:

|l(v)| =

∣∣∣∣∫
Ω

f(x)v′(x)

∣∣∣∣
≤ ‖f‖L2(Ω)‖v′‖L2(Ω)

≤ ‖f‖L2(Ω)(‖v′‖2
L2(Ω) + ‖v′‖2

L2(Ω))
1
2

= ‖f‖L2(Ω)‖v‖H1(Ω). (A.14)

and so the constant c2 = ‖f‖L2(Ω). �
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A.7 A Proof of the Discrete Inf-Sup Condition for (3.17)

As (3.10) and (3.11) are equivalent, the discretisation (on the same mesh Tn) is an equiv-

alent problem, and so we will focus on a proof of the discrete inf-sup condition for the

problem:

Find uh ∈ P1
cont(Tn) s.t.∫

Tn
u′hvhdx =

∫
Tn
fvhdx ∀vh ∈ P0(Tn) (A.15)

Thus, the condition we wish to prove is

inf
wh∈P1

cont(Tn)
sup

vh∈P0(Tn)

∫
Tn w

′
hvh

‖w′h‖L2‖vh‖L2

≥ γ̂ (A.16)

or equivalently:

sup
vh∈P0(Tn)

∫
Tn w

′
hvh

‖vh‖L2

≥ γ̂‖w′h‖L2 ∀wh ∈ P1
cont(Tn). (A.17)

We note that we may choose vh = vh(wh) = w′h for each case (since the derivative

associated with the space P1
cont(Tn) is precisely P0(Tn). In this case, we find

sup
vh∈P0(Tn)

∫
Tn w

′
hvh

‖vh‖L2

≥
∫
Tn w

′
h

2

‖w′h‖L2

=
‖w′h‖2

L2

‖w′h‖L2

= ‖w′h‖L2 . �
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A.8 Constructing the Least-Squares System in One Dimension

Similarly to (A.3), supp(φ′i) = [xi−1, xi+1] of width 2h in the integrand, and so Aij = 0 if

|i− j| > 1. We again calculate the three cases independently.

If i = j:

Aij =

∫
Ω

φ′iφ
′
idx

=

∫ xi+1

xi

φ′iφ
′
idx+

∫ xi

xi−1

φ′iφ
′
jdx

=
1

h2

∫ xi+1

xi

dx+
1

h2

∫ xi

xi−1

dx

=
2

h
(φi symmetrix about x = xi). (A.18)

If i = j − 1

Aij =

∫
Ω

φ′iφ
′
jdx

=

∫ xi+1

xi

φ′iφ
′
idx

= − 1

h2

∫ xi+1

xi

dx

= −1

h
(A.19)

Similarly, if i = j + 1

Aij =

∫
Ω

φ′iφ
′
jdx

=

∫ xi

xi−1

φ′iφ
′
idx

= − 1

h2

∫ xi

xi−1

dx

= −1

h
(A.20)

And so we obtain A as seen in (3.17). �
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A.9 The Equivalence of Problems (4.11) and (4.12)

We begin with the introduction of a Riesz operator Rh, defined thusly:

Rh : V→ (V)∗ s.t

〈Rh(vh), ψh〉V∗,V = (vh, ψh)V ∀ψh, vh ∈ Vh (A.21)

If we look now at the discrete dual norm of the residual ρh (as defined (eq number)), we

may now write it as

‖ρh‖(Vh)∗ = sup
ψh∈Vh

〈ρh, ψh〉
‖ψ‖V

= sup
ψh∈Vh

(R−1
h (ρh), ψ)V
‖ψ‖V

(A.22)

the supremum here is achieved when ψh lies precisely in the R−1
h (ρh) (i.e it can be written

as αR−1
h (ρh), where α is some scalar constant). Therefore we may write

‖ρh‖(Vh)∗ =
α(R−1

h (ρh), R
−1
h (ρh))V

α‖R−1
h (ρh)‖V

=
(R−1

h (ρh), R
−1
h (ρh))V

(R−1
h (ρh), R

−1
h (ρh))

1
2
V

= ‖R−1
h (ρh)‖V. (A.23)

For simplicity, we write y = R−1
h (f), Bwh = R−1

h (Awh), ρ̂h = y − Bwh. We note now

that the minimisation problem (4.14) is equivalent to

Find uh ∈ Uh s.t

uh = arg min
wh∈Uh

1

2
‖y − Awh‖2

V := F (ρ̂h). (A.24)

Recall the variational principle that, because F (ρ̂h) is quadratic and positive every-

where, it must achieve its minimum at F ′(ρ̂h;xh) = 0, where

F ′(ρ̂h;xh) = lim
α→0

F (ρ̂h + αxh)− F (ρ̂h)

α
= (y −Bwh,−Bxh)V (A.25)

is the Gateaux derivative of the Function F (ρ̂h) in a direction xh. In this case, we have

the problem:

Find uh ∈ Uh s.t.

(Buh, Bwh)V = (y,Bwh)V ∀wh ∈ Uh

→ (R−1
h (Auh), R

−1
h (Awh))V = (R−1

h (f), R−1
h (Awh))V

→ 〈R−1
h (Auh), Awh〉V,V∗ = 〈R−1

h (f), Awh〉V,V∗ (A.26)
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By defining rh = y − Buh and taking its inner product in V with a test function vh, we

obtain

(rh, vh)V + (R−1(Auh), vh)V = (R−1(f), vh)V ∀vh ∈ Vh

→ (rh, vh)V + 〈Auh, vh〉V∗,V = 〈f, vh〉V∗,V ∀vh ∈ Vh (A.27)

and from the condition (A.26), we notice we require:

Find uh ∈ Uh, rh ∈ Vh s.t.

〈Awh, rh〉V∗,V = 0 ∀wh ∈ Uh. (A.28)

Finally, we note (equation (2.3)) that in our setting, our pairings are equivalent to the

operators b(·, ·), l(·). Thus, our problem is written as:

Find uh ∈ Uh, rh ∈ Vh s.t

(rh, vh)V + b(uh, vh) = l(vh) ∀vh ∈ Vh

b(wh, rh) = 0 ∀wh ∈ Uh. �
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A.10 The Sufficiency of One Application of Red Refinement for

DDMRes on the Peterson Mesh

We can think of a Peterson Mesh of degree n of being comprised of n ‘strips’ of width h,

where each strip has the geometry of Figure 15.

Figure 15: One of the ‘strips’ associated with the n = 2 Peterson mesh.

This visualisation will aid us to count the number of elements in terms of n. Looking at

the image, it is clear each strip is divided into two smaller strips, each containing 2n+ 1

elements. Thus, the number of elements in the mesh is simply Nelems = 2n(2n + 1) =

4n2+2n. The number of vertices is slightly more complicated. If we consider the boundary

of the entire mesh, we may count n + 1 vertices on the top and bottom, and 2n − 1 on

each side for a total of 6n vertices on the boundary. Then, if we examine the strips we

may see that for each strip we have n vertices in the middle, counted for all n strips. We

will also need to count the number of vertices on either the top or bottom (of which there

are n− 1) a total of n-1 times. So we have

Nverts = 6n+ n2 + (n− 1)(n− 1) = 2n2 + 4n+ 1. (A.29)

Note it is easy to see at this point that Nelems > Nverts ∀n > 1, which is the inequality

we wish to reverse. Now, for the red refinement to be sufficient, we require that it adds

a number of vertices Nnew verts such that

Nnew verts ≥ 4n2 + 2n− (2n2 + 4n+ 1) (A.30)

. ≥ 2n2 − 2n− 1 (A.31)
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Counting the number of new vertices introduced during the red refinement requires only

the observation that every line is bisected for each triangle. So, Nnew verts is simply the

number of lines that connect the old vertices in the first mesh. To count these, we will

again look to our strip construction. The number of new vertices associated with the

border is again 6n, and looking to each strip we notice that we can associate each of the

4n+ 2 elements with one of the interior lines in a circular way (Figure 16).

Figure 16: Blue and red vertices are associated with the element directly ‘clockwise’ of them. Yellow

vertices must be counted n times, and green vertices must be counted n− 1 times.

So in total we can see that

Nnew verts = 6n+ n((4n+ 2) + (n− 1)) + (n− 1)n

= = 6n+ 4n2 + 2n+ n2 − n+ n2 − n (A.32)

= 6n2 + 6n (A.33)

which clearly satisfies (A.30). However, due to the boundary conditions imposed on Vh,

we will not be including all the border vertices in the resultant system. To be certain we

have enough for all cases, we must remove all of the border vertices (of which there are

now 12n), and we will see that we have a number of ‘surplus’ vertices equivalent to

Nsurplus = 6n2 + 6n− 2n2 + 2n+ 1− 12n

= 4n2 − 4n+ 1.

> 0 ∀n ∈ N. �
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A.11 Reduction to Petrov-Galerkin for the Vertical Refinement

Scheme

Similarly to A.10, we will need to perform a vertical refinement scheme for general n,

count the number of new vertices introduced and recall that we have a Petrov-Galerkin

Scheme in the case where Nsurplus = 0. Quite simply, we count the number of vertices

in the vertical refinement scheme by splitting the new lines into ‘odd’ (drawn at odd

multiples of h
2
) and ‘even’ (drawn at even multiples of h

2
). It is easy to see that there are

n odd strips introducing n+ 1 new vertices each, and n− 1 even strips introducing n new

vertices each. Thus, our surplus (before the exclusion of outflow vertices) is

Nsurplus = n(n+ 1) + (n− 1)n− 2n2 + 2n+ 1 (from eqn A.64)

= n2 + n+ n2 − n− 2n2 + 2n+ 1

= 2n+ 1. (A.34)

We also note that in this particular refinement, each single edge has precisely 2n + 1

vertices associated with it. As a result, any system with a flow perpendicular to one of

the sides will exclude precisely 2n+1 vertices, and our system will be square. As a result,

we will have dim(Uh) = dim(Vh) and our method is reduced to a Petrov-Galerkin Scheme

as described in 4.2.2. �
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